Predictive modeling

نویسندگان

  • Hian Chye Koh
  • Gerald Tan
چکیده

Data mining has been used intensively and extensively by many organizations. In healthcare, data mining is becoming increasingly popular, if not increasingly essential. Data mining applications can greatly benefit all parties involved in the healthcare industry. For example, data mining can help healthcare insurers detect fraud and abuse, healthcare organizations make customer relationship management decisions, physicians identify effective treatments and best practices, and patients receive better and more affordable healthcare services. The huge amounts of data generated by healthcare transactions are too complex and voluminous to be processed and analyzed by traditional methods. Data mining provides the methodology and technology to transform these mounds of data into useful information for decision making. This article explores data mining applications in healthcare. In particular, it discusses data mining and its applications within healthcare in major areas such as the evaluation of treatment effectiveness, management of healthcare, customer relationship management, and the detection of fraud and abuse. It also gives an illustrative example of a healthcare data mining application involving the identification of risk factors associated with the onset of diabetes. Finally, the article highlights the limitations of data mining and discusses some future directions. Original Contributions Journal of Healthcare Information Management — Vol. 19, No. 2 65 reduce their losses by using data mining tools to help them find and track offenders. Fraud detection using data mining applications is prevalent in the commercial world, for example, in the detection of fraudulent credit card transactions. Recently, there have been reports of successful data mining applications in healthcare fraud and abuse detection. Another factor is that the huge amounts of data generated by healthcare transactions are too complex and voluminous to be processed and analyzed by traditional methods. Data mining can improve decision-making by discovering patterns and trends in large amounts of complex data. Such analysis has become increasingly essential as financial pressures have heightened the need for healthcare organizations to make decisions based on the analysis of clinical and financial data. Insights gained from data mining can influence cost, revenue, and operating efficiency while maintaining a high level of care. Healthcare organizations that perform data mining are better positioned to meet their long-term needs, Benko and Wilson argue. Data can be a great asset to healthcare organizations, but they have to be first transformed into information. Yet another factor motivating the use of data mining applications in healthcare is the realization that data mining can generate information that is very useful to all parties involved in the healthcare industry. For example, data mining applications can help healthcare insurers detect fraud and abuse, and healthcare providers can gain assistance in making decisions, for example, in customer relationship management. Data mining applications also can benefit healthcare providers, such as hospitals, clinics and physicians, and patients, for example, by identifying effective treatments and best practices. There are also other factors boosting data mining’s popularity. For instance, as a result of the Balanced Budget Act of 1997, the Centers for Medicare and Medicaid Services must implement a prospective payment system based on classifying patients into case-mix groups, using empirical evidence that resource use within each case-mix group is relatively constant. CMS has used data mining to develop a prospective payment system for inpatient rehabilitation. The healthcare industry can benefit greatly from data mining applications. The objective of this article is to explore relevant data mining applications by first examining data mining methodology and techniques; then, classifying potential data mining applications in healthcare; next, giving an illustration of a healthcare data mining application; and finally, highlighting the limitations of data mining and offering some future directions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary Phase Diagram Modeling of Chiral Medetomidine Salts Using NRTL-SAC Model

Experimental determination of solubility and ternary phase diagram of chiral compound are of tedious and time consuming tasks, and in many cases, there is not enough experimental data for different enantiomeric compositions to access the experimental ternary phase diagram. Using thermodynamic models with predictive capability, having less dependency on experimental data, affords a great advanta...

متن کامل

Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards) were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ), maximum specific...

متن کامل

Predictive Modeling of Phenylpiperazine Derivatives for Renin Inhibition.

The renin–angiotensin–aldosterone system is the well established endocrine system having significant role in preserving hemodynamic stability. Renin is secreted from the juxtaglomerular cells of the kidney. Phenylpiperazine derivatives have been reported as human renin inhibitor. To perform predictive QSAR modeling for 27 phenylpiperazine derivatives as renin enzyme inhibitors. The IC50 values ...

متن کامل

Modeling of Artemisia sieberi Besser Habitat Distribution Using Maximum Entropy Method in Desert Rangelands

Predictive modeling of habitat distribution of range plant species and identification of their potential habitats play important roles in the restoration of disturbed rangelands. This study aimed to predict the geographical distribution of Artemisia sieberi and find the influential variables in the distribution of A. sieberi in the desert rangelands of central Iran. Maps of environmental variab...

متن کامل

Scaling, Modeling and Traffic Control of a Real Railway Network using Max-plus Algebra and Model Predictive Control

Delay time recovery can increase the efficiency of the railway network and increase the attractiveness of railway transport against other transportation systems. This article presents a new dynamical model of railway system. The proposed model is a discrete event systems that is defined based on the deviation of travel time and deviation of stop time of trains. Due to the existence of multiple ...

متن کامل

A Novel LSSVM Based Algorithm to Increase Accuracy of Bacterial Growth Modeling

Background: The recent progress and achievements in the advanced, accurate, and rigorously evaluated algorithms has revolutionized different aspects of the predictive microbiology including bacterial growth.Objectives: In this study, attempts were made to develop a more accurate hybrid algorithm for predicting the bacterial growth curve which can also be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005